FAIR Data and Distributed Analytics

FAIR stands for Findable, Accessible, Interoperable and Reusable.

We envision crossing borders of data silos, analyzing them by making data and services FAIR.

Our research focuses on methods for machine actionable data and services to foster data-driven science and innovation.

Data FAIRification and Management

Guide practitioners to develop a value-oriented FAIR data management policy to enable organizations to manage their data through its lifecycle and support their data driven business models

Distributed Analytics Platforms

The FIT Data Analytics Train platform provides a solution to gain full benefits of distributed data, without sharing any data. Analytics algorithms visit the decentral data centres and return (and travel on) with trained models of what they have learned from the data.

PID systems

Persistent Identifiers (PID) used for managing and sharing digital resources in complex data-intensive production and research.  PID systems identify digital objects (such as data, software) globally uniquely and make them findable both for human and machine users. 

FAIR Capability Maturity Models and Assessment

Making your data FAIR is a journey: each organization decides the best path for themselves.  Capability Maturity model helps organizations to identify their critical process for their goals and guides them to improve those for achieving FAIR data.

Our services

PADME

Personal Health Train (PHT) is a novel approach, that aims to establish a distributed data analytics infrastructure enabling the (re)use of distributed healthcare data. At the same time, data owners stay in control of their data. The main principle of the PHT is that data remains in its original location, and analytical tasks visit data sources and execute the tasks. The PHT provides a distributed, flexible approach to using data in a network of participants, incorporating the FAIR principles. PADME is a PHT implementation developed by Fraunhofer in collaboration with RWTH Uni, Cologne University Hospital and Leipzig Uni. Distributed Analytics (DA) has been introduced to overcome the challenges of accessing and performing data analysis on privacy-sensitive data. The main principle of DA is that the analysis task is brought to the data instead of bringing data to a centralised location to run the data analysis algorithms

Our study is part of German MII and GoFAIR initiatives.

Publications

Jahr
Year
Titel/Autor:in
Title/Author
Publikationstyp
Publication Type
2025 Moiré Pattern Detection: Stability and Efficiency with Evaluated Loss Function
Li, Zhuocheng; Shen, Xizhu; Luan, Simin; Guo, Shuwei; Boukhers, Zeyd; Sui, Wei; Wang, Yuyi; Yang, Cong
Konferenzbeitrag
Conference Paper
2025 BladeView: Toward Automatic Wind Turbine Inspection With Unmanned Aerial Vehicle
Yang, Cong; Zhou, Hua; Liu, Xun; Ke, Yan; Gao, Bo; Grzegorzek, Marcin; Boukhers, Zeyd; Chen, Tao; See, John
Zeitschriftenaufsatz
Journal Article
2024 Transition in Focus of Prediction Tasks for Skeleton Graph Component Detection with Transformer
Wang, Zhiyuan; Yang, Cong; Zhang, Yulu; Boukhers, Zeyd; Sui, Wei; Ji, Yi; Liu, Chunping
Konferenzbeitrag
Conference Paper
2024 A non-enhanced CT-based deep learning diagnostic system for COVID-19 infection at high risk among lung cancer patients
Du, Tianming; Sun, Yihao; Wang, Xinghao; Jiang, Tao; Xu, Ning; Boukhers, Zeyd; Grzegorzek, Marcin; Sun, Hongzan; Li, Chen
Zeitschriftenaufsatz
Journal Article
2024 Falcon 7b for Software Mention Detection in Scholarly Documents
Khan, Ameerali; Ramadan, Qusai; Yang, Cong; Boukhers, Zeyd
Konferenzbeitrag
Conference Paper
2024 Understanding Open Source Large Language Models: An Exploratory Study
Sowe, Sulayman K.; Mou, Yongli; Cheng, Du; Kong, Lingxiao; Neumann, Alexander Tobias; Decker, Stefan
Konferenzbeitrag
Conference Paper
2024 Skeleton Ground Truth Extraction: Methodology, Annotation Tool and Benchmarks
Yang, Cong; Indurkhya, Bipin; See, John; Gao, Bo; Ke, Yan; Boukhers, Zeyd; Yang, Zhenyu; Grzegorzek, Marcin
Zeitschriftenaufsatz
Journal Article
2024 Deep author name disambiguation using DBLP data
Boukhers, Zeyd; Asundi, Nagaraj Bahubali
Zeitschriftenaufsatz
Journal Article
2024 YawnNet: A Visual-Centric Approach for Yawning Detection
Sun, Ruoxi; Yang, Xinyu; Qian, Cong; Zhu, Chenyu; Sui, Wei; Boukhers, Zeyd; Yang, Cong
Konferenzbeitrag
Conference Paper
2023 Enhancing Reproducibility in Research Through FAIR Digital Objects
Boukhers, Zeyd; Castro, Leyla Jael
Konferenzbeitrag
Conference Paper
2023 NFDI4DS Infrastructure and Services
Schimmler, Sonja; Wentzel, Bianca; Bleier, Arnim; Dietze, Stefan; Karmakar, Saurav; Mutschke, Peter; Kraft, Angelie; Taffa, Tilahun A.; Usbeck, Ricardo; Boukhers, Zeyd; Auer, Sören; Castro, Leyla Jael; Ackermann, Marcel R.; Neumuth, Thomas; Schneider, Daniel; Abedjan, Ziawasch; Latif, Atif; Limani, Fidan; Ahmad, Raia Abu; Rehm, Georg; Khorasani, Sima Attar; Lieber, Matthias
Konferenzbeitrag
Conference Paper
2023 Knowledge guided multi-filter residual convolutional neural network for ICD coding from clinical text
Boukhers, Zeyd; Goswami, Prantik; Jürjens, Jan
Zeitschriftenaufsatz
Journal Article
2023 Pedestrian Collision Prediction Using a Monocular Camera
Chen, Shiyuan; Qin, Xue; Boukhers, Zeyd; See, John; Sui, Wei; Yang, Cong
Konferenzbeitrag
Conference Paper
2023 Beyond Trading Data: The Hidden Influence of Public Awareness and Interest on Cryptocurrency Volatility
Boukhers, Zeyd; Bouabdallah, Azeddine; Yang, Cong; Jürjens, Jan
Konferenzbeitrag
Conference Paper
2023 Research Knowledge Graphs in NFDI4DS
Karmakar, Saurav; Zloch, Matthäus; Fidan Limani; Zapilko, Benjamin; Upadhyaya, Sharmila; D’Souza, Jennifer; Castro, Leyla Jael; Rehm, Georg; Ackermann, Marcel R.; Sack, Harald; Boukhers, Zeyd; Schimmler, Sonja
Konferenzbeitrag
Conference Paper
2023 Enhancing Data Space Semantic Interoperability through Machine Learning: a Visionary Perspective
Boukhers, Zeyd; Lange-Bever, Christoph; Beyan, Oya Deniz
Konferenzbeitrag
Conference Paper
2023 Data Trading and Monetization: Challenges and Open Research Directions
Ramadan, Qusai; Boukhers, Zeyd; Alshaikh, Muath; Lange-Bever, Christoph; Jürjens, Jan
Konferenzbeitrag
Conference Paper
2023 Explainable AI for Bioinformatics: Methods, Tools and Applications
Karim, Md. Rezaul; Islam, Tanhim; Shajalal, Md; Beyan, Oya; Lange, Christoph; Cochez, Michael; Rebholz-Schuhmann, Dietrich; Decker, Stefan
Zeitschriftenaufsatz
Journal Article
2023 PADME-SoSci: A Platform for Analytics and Distributed Machine Learning for the Social Sciences
Boukhers, Zeyd; Bleier, Arnim; Ucer Yediel, Yeliz; Hienstorfer-Heitmann, Mio; Jaberansary, Mehrshad; Welten, Sascha; Koumpis, Adamantios; Beyan, Oya Deniz
Konferenzbeitrag
Conference Paper
2022 Whois? Deep Author Name Disambiguation Using Bibliographic Data
Boukhers, Zeyd; Asundi, Nagaraj Bahubali
Konferenzbeitrag
Conference Paper
2021 Distributed Skin Lesion Analysis Across Decentralised Data Sources
Mou, Y.; Welten, S.; Jaberansary, M.; Ucer Yediel, Y.; Kirsten, T.; Decker, S.; Beyan, O.
Konferenzbeitrag
Conference Paper
2021 DeepKneeExplainer: Explainable knee osteoarthritis diagnosis from radiographs and magnetic resonance imaging
Karim, Rezaul; Jiao, Jiao; Döhmen, Till; Cochez, Michael; Beyan, Oya; Rebholz-Schuhmann, Dietrich; Decker, Stefan
Zeitschriftenaufsatz
Journal Article
2021 Dams: A distributed analytics metadata schema
Welten, S.; Neumann, L.; Yediel, Y.U.; Bonino da Silva Santos, L.O.; Decker, S.; Beyan, O.
Zeitschriftenaufsatz
Journal Article
2021 A Minimal Information Model for Potential Drug-Drug Interactions
Hochheiser, H.; Jing, X.; Garcia, E.A.; Ayvaz, S.; Sahay, R.; Dumontier, M.; Banda, J.M.; Beyan, O.; Brochhausen, M.; Draper, E.; Habiel, S.; Hassanzadeh, O.; Herrero-Zazo, M.; Hocum, B.; Horn, J.; LeBaron, B.; Malone, D.C.; Nytro, O.; Reese, T.; Romagnoli, K.; Schneider, J.; Zhang, L.; Boyce, R.D.
Zeitschriftenaufsatz
Journal Article
2021 Deep learning-based clustering approaches for bioinformatics
Karim, M.R.; Beyan, O.; Zappa, A.; Costa, I.G.; Rebholz-Schuhmann, D.; Cochez, M.; Decker, S.
Zeitschriftenaufsatz
Journal Article
2020 Implementation of eHealth and AI integrated diagnostics with multidisciplinary digitized data: Are we ready from an international perspective?
Bukowski, M.; Farkas, R.; Beyan, O.; Moll, L.; Hahn, H.; Kiessling, F.; Schmitz-Rode, T.
Zeitschriftenaufsatz
Journal Article
2020 A snapshot neural ensemble method for cancer-type prediction based on copy number variations
Karim, M.R.; Rahman, A.; Jares, J.B.; Decker, S.; Beyan, O.
Zeitschriftenaufsatz
Journal Article
2020 DeepCOVIDExplainer: Explainable COVID-19 Diagnosis from Chest X-ray Images
Karim, M.R.; Döhmen, T.; Cochez, M.; Beyan, O.; Rebholz-Schuhmann, D.; Decker, S.
Konferenzbeitrag
Conference Paper
2020 Enabling ad-hoc reuse of private data repositories through schema extraction
Gleim, L.C.; Karim, M.R.; Zimmermann, L.; Kohlbacher, O.; Stenzhorn, H.; Decker, S.; Beyan, O.
Zeitschriftenaufsatz
Journal Article
2019 Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network
Rezaul Karim, M.; Cochez, M.; Jares, J.B.; Uddin, M.; Beyan, O.; Decker, S.
Konferenzbeitrag
Conference Paper
2019 Prognostically Relevant Subtypes and Survival Prediction for Breast Cancer Based on Multimodal Genomics Data
Karim, M.R.; Wicaksono, G.; Costa, I.G.; Decker, S.; Beyan, O.
Zeitschriftenaufsatz
Journal Article
2019 OncoNetExplainer: Explainable predictions of cancer types based on gene expression data
Karim, M.R.; Cochez, M.; Beyan, O.; Decker, S.; Lange, Christoph
Konferenzbeitrag
Conference Paper
2019 Implementation of clinical decision support services to detect potential drug-drug interaction using clinical quality language
Nguyen, B.-P.; Reese, T.; Decker, S.; Malone, D.; Boyce, R.D.; Beyan, O.
Konferenzbeitrag
Conference Paper
2019 Design of metadata services for clinical data interoperability in Germany
Löbe, M.; Beyan, O.; Stäubert, S.; Meineke, F.; Ammon, D.; Winter, A.; Decker, S.; Löffler, M.; Kirsten, T.
Konferenzbeitrag
Conference Paper
2018 Representing medication guidelines for use in production rule systems in the context of POLYCARE project
Könning, Jonas W.; Velasco, Carlos A.; Mohamad, Yehya; Decker, Stefan; Beyan, Oya
Konferenzbeitrag
Conference Paper
2018 Schema extraction for privacy preserving processing of sensitive data
Gleim, L.C.; Rezaul Karim, M.; Zimmermann, L.; Kohlbacher, O.; Stenzhorn, H.; Decker, S.; Beyan, O.
Konferenzbeitrag
Conference Paper
2018 Preface of SeWeBMeDA 2018: Semantic web solutions for large-scale biomedical data analytics
Hasnain, A.; Beyan, O.; Decker, S.; Rebholz-Schuhmann, D.
Konferenzbeitrag
Conference Paper
2018 Research Data in the Fraunhofer Digital Project. Creating a FAIR Research Data Infrastructure and Culture
Beyan, O.; Wuchner, Andrea; Eisengräber-Pabst, Dirk; Quix, C.; Zaschke, Christian; Schumacher, Oliver
Konferenzbeitrag
Conference Paper
2018 A distributed analytics platform to execute FHIR-based phenotyping algorithms
Karim, M.R.; Nguyen, B.-P.; Zimmermann, L.; Kirsten, T.; Löbe, M.; Meineke, F.; Stenzhorn, H.; Kohlbacher, O.; Decker, S.; Beyan, O.
Konferenzbeitrag
Conference Paper
2017 Minimum information for dielectric measurements of biological tissues (MINDER)
Porter, E.; Gioia, A. La; Salahuddin, S.; Decker, S.; Shahzad, A.; Adnan Elahi, M.; O'Halloran, M.; Beyan, O.
Zeitschriftenaufsatz
Journal Article
2017 Towards a FAIR sharing of scientific experiments: Improving discoverability and reusability of dielectric measurements of biological tissues
Rezaul Karim, M.; Heinrichs, Matthias; Gleim, Lars C.; Cochez, Michael; Porter, Emily; Gioia, Alessandra la; Salahuddin, Saqib; O'Halloran, Martin; Decker, Stefan; Beyan, Oya
Konferenzbeitrag
Conference Paper
2016 An RDF based semantic approach to model temporal relations in health records
Beyan, O.; Decker, S.
Konferenzbeitrag
Conference Paper
Diese Liste ist ein Auszug aus der Publikationsplattform Fraunhofer-Publica

This list has been generated from the publication platform Fraunhofer-Publica